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SUMMARY

This report derives closed form expressions for the position and velocity

of a spacecraft during a finite burn using the method involving the theory of asymp-

totic expansion of the optimal impulsive solution. The small parameter is given

by the reciprocal of the mass flow rate. The expansion is given in terms of the

impulsive solution and holds up through third-order for the velocity and fourth-

order for the position.
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DESCRIPTION OF THE OPTIMAL IMPULSIVE SOLUTION

An optimal-impulse transfer from one trajectory to another satisfies certain

necessary conditions (Ref. 1). This section will list the pertinent characteristics

without derivation. It is assumed, in what follows, that the user has available a

method for achieving the optimal impulsive solution which satisfies these conditions.

The coasting trajectories, before and after the impulse burn, satisfy the cen-

tral force field equations

R
R= RLp3 (1)

r

where

R = fR + gR
o o

(la)
R= fR +gR

o 0

and f, g, f, and g are scalar functions of the initial conditions and an anomaly

variable which is related to the time by Kepler's equation (Ref. 2).

,,C a:f;,@ ... c,- A i - timl, w hlavc

+ --

R (t) = R-(t)

I+ A (2)
R (t) R (t)- c tn

m- X

The vector A satisfies the variational equations of Eq. (1)

A = - -- + 3 R 5 R (3)
r r
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The equation for the mass is

k
m =- (k, c constant) (4)

C

and for the impulse

- c mtn i (5)

On each of the coasting arcs, the vector A satisfies the transition matrix

equations of the variational solution of Eq. (1)

A =(bR )A + (aR ) A
o o

(6)

A R A ( bt
o o

The necessary optimality condition is given by the characteristic that the

magnitude of A, X is a maximum at an interval impulse, has a non-positive

slope at an initial burn, a non-negative slope at a terminal impulse, and that, at

all impulse times, X is equal to the same maximum value. Furthermore, if X

exceeds this maximum constant value anywhere on the coasting arcs, the the solu-

tion is not optimal, and a better solution can be found.

The Lagrange multipliers, A and A, of the position and velocity state

must be continuous over the entire arc, except at such times and places where

constraints are imposed on the state and other irregular instances (Ref. 3).

We seek a solution of the finite burn solution of the equations
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A.

R
= - -

r

A
= - -"r

r

kA
+n -m A

k
m = -

in terms of the solution for the impulsive case.
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EXPANSION OF THE IMPULSE SOLUTION

Consider the integration of Eq. (7) for a finite time.

R(t) = R(t ) - /1f dt3 + )dt
t r

0 o

R(t) = R(t )
0

t t

tr t
0 O

(8)

m = m + m(t-t )
0 0

As a zero-order approximation, consider the coast solution of Eq. (1)

from the same initial conditions

R(t) = R(t )

R(t) = R(t )

t

dt
r

t

+(t-to)R(to ) -/~

0

(9)

dt dt
rr

Eliminating R(t ) and R(t ) from Eqs. (8) and (9), we have0 0

I · t
R(t) = R(t) - J ( R3

t r
O

J t ( k A) d t
0

-R dt +
r

t +

R(t) = R(t)-, Jj( R - dtdt tm A)
t r r
0 0
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It is plain from Eq. (10) that, as t-t the solution of Eq. (10) approaches

the impulsive solution given by Eq. (2). We seek a more definitive form of the ex-

pansion for short finite time. In what follows, let t-t = T.
o

Consider the Taylor series expansion of the difference integrand of the

gravity term.

R R R R R

3 --3 =  3 + dt (- (3
r r r r r r

o o o o

Since the initial conditions for both coast and burn solutions are the same, the

first non-vanishing term is the r 2 term. We have

R R* i -R-R 123 R o
R =+ -- 0 ) 00 T2 (Iha)

32 3 2
r r r r

o o

RR A 2
1-3 o_ _ k o

2 m A 3
r o o 2r
o o

where R* is the transpose of R and I=3x3 identity matrix. Examination of
0 0

Eq. (11b) shows it to be nonlinear in the vector variable R . Similarly, the next
0

term, (T ), will be nonlinear in R and R and, finally, the T term will be
0 o

nonlinear in the variable A itself. While we could formally carry out this ex-
o

pansion, terms nonlinear in A and A will prove very cumbersome for inversion.
0 0

In what follows, we restrict the solution to the expansion which is linear in

the vector variable, A , and its time derivatives.
0
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R _

rr

R R* i i

3 (I-3 o
r r i=2 dT 0o 0

R -R i
-5 2 oR ) i m o

r i=3 dT o

We have the following identity

t

Of

R R-I + R* + R R*
5 o o o o o o

r
o

(12)! ]7i!

(13)
n! i i

. .f(x) dxn = ( d f) T
i=n dT O

Equation (10) now becomes

R(t) = R(t) +t k A
t m A
t
o

+R R -
0o o0

R R* 9/ *

dt - k(I-3 )oJJ k )d + (d I + R*
r3 2 m 5 o o- o

r r t r

do-" 2d) m m A)t4
r t
o o

R(t) = R(t) + t, mt
O

A dt 2T)\ , 3
r
o

R* t
R-3 Ro ( k )dt + 9 (d I +R R

2 m X 5 o o
r t r
0 0 0

R R* t
+R R* - 5 d O0 Frr(m A) 5

00 od 2 mX
r t
o o

where d =R t .
0 00
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Before proceeding with the solution, it is timely to point out the time-scale

difference in the variation of the Lagrange multipliers, A, and the mass flow

rate. We note that the unit vector in the direction of the thrust rotates relatively

slowly as compared to the time-variation of the mass. Thus, we take a linear

variation in thrust direction as a good enough approximation during the burn. We

have

d A = (Ax5)xA (15)dt X 3

Finally, from the definition of the mass flow rate, we have

dmdt =dm

and (16)

k dtn = c dm
m n-1

m

th
We define the i integral of the reciprocal of the mass

m i i

mi(m, m) = fJ'f. f m
m

o

m
m = ,n

1 m
o

(17)

m2 = m'.n m (i-rn)
o

2 2 2
2 m -m2 (m-m )

m m o om itnm - 0 0in -
3 2 m 4 2

0

etc.
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In addition, we define the ith integral of the first moment of the reciprocal of the

mass

m i (m-m )dm'

si (m ) = JJ'J mm
o

s1 = - moml+ (m-m)
1 01 0

S2 mo m2 2

etc.

The required asymptotic expansion in terms of the reciprocal of the con-

stant mass flow rate is given by

I A s1 (AxA )xA cIL
R(t) = R(t)- c ml 1- 0+ -3 + I- 3

mX Xi 3 3:2
0 X r m

o o

R R*

2 J
r
o

A s3 (A xA)xA
0 03 0 0

m- +-- I
o X)

Ao  s4 (AoxA)xA
Lm4 + * 3

o X0

R R*
c [dI+R R*+R R*+-5 R R

5 '3 o o o o o 2
rm r
o o

A s (Ao xAoAo
R(t) = R(t)- n m 2 + -3 ]+ 3 I 3

0 X r m
o o

R R*
020 1
r
o

s 4 (A xA0 )xA
m ;3 1

0

R R*
4 [dI+R R* + R -5 do 2
o o o o 2

r m r
o o

[ A s5 (AoxAo)xAo
m 5 A + -- 1

o m 5O 0
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